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ABSTRACT

Drought	stress	threatens	rice	productivity,	especially	in	South	Asia,	where	climate	variability	exacerbates	water	scarcity.	This	study	
investigates	root	growth	responses	in	29	rice	germplasms	(7	varieties,	22	landraces)	from	the	drought-prone	Red-Lateritic	Zone	of	West	
Bengal,	India.	Using	polyethylene	glycol	at	four	different	concentrations	(i.e.	0%,	5%,	10%,	and	20%),	stress	was	induced	and	root	growth	
of	each	germplasm	was	monitored	over	10	days.	Four	distinct	root	growth	patterns	emerged:	Pattern	1	showed	the	highest	average	root	
length	(ARL)	under	control,	with	reductions	of	33.68%,	57.72%,	and	97.79%	with	increasing	stress.	Pattern	2	exhibited	a	sharp	initial	
decline	(~50%)	that	stabilized	across	higher	stress	levels.	Pattern	3	displayed	a	decrease	in	mild	stress,	followed	by	a	gradual	increase	in	
ARL	under	moderate	and	severe	stress.	Pattern	4,	unique	to	the	landrace	Kalpana,	showed	an	ARL	increase	under	mild	stress	surpassing	
control,	but	ARL	dropped	to	zero	under	severe	conditions.	These	patterns	highlight	diverse	root	adaptations	to	drought.	This	study	offers	
insights	into	breeding	strategies	to	enhance	drought	tolerance	through	targeted	root	traits	in	rice.
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Introduction
Rice is the grain of life and a staple food for much of the world, 
particularly in South and Southeast Asia, where its cultivation is 
under growing pressure from surging populations and 
industrialization [1,2]. With shrinking arable land and shifting 
climate patterns, the impact of drought has become a critical 
threat to agriculture, leading to signi�icant crop losses 
worldwide [3, 4, 5]. Drought affects over a third of the world's 
cultivated land, making it a key factor in the decline of global rice 
productivity [6].
Roots, as essential organs for water and nutrient absorption, are 
pivotal in determining a plant's response to drought [3, 7]. In 
rice, drought often triggers enhanced root growth while 
inhibiting shoot growth, thereby increasing the root-shoot 
ratio[8, 9, 10]. Ferreira et al., (2015) have also observed higher 
root-shoot ratio, higher root biomass accumulation, etc. in other 
plants including trees. Post-drought rewatering has also been 
shown to stimulate root growth, a vital process for crop 
recovery. Given the �luctuating moisture levels in drought-prone 
environments, evaluating root extension under different 
moisture conditions is crucial for understanding drought 
resistance [11, 12, 13].Polyethylene glycol (PEG) is frequently 
used in studies to simulate drought conditions and assess root 
growth. Research has demonstrated the utility of various PEG 
concentrat ions  to  induce drought  responses ,  with 
concentrations ranging from 18.1% [14] to 25% [15] being 
proposed for evaluating rice cultivars. However, determining

the optimal PEG concentration for drought resistance 
evaluation remains a challenge.Quantifying root growth under 
these stress conditions, particularly through mathematical 
modeling, provides valuable insights. Such models by Susilawati 
et al. (2022),and De et al., (2024b) allow for precise 
comparisons of root responses across different rice genotypes 
and environmental conditions, offering a powerful tool for 
simulating and predicting drought resilience.Therefore, the 
pattern of root growth under drought stress plays a pivotal role 
in determining a plant's drought tolerance and its ability to 
recover in terms of yield after facing such harsh abiotic 
conditions. 

Materials	and	Methods
In our study, we examined 29 rice germplasms (Table 1), 
sourced from key institutions in drought-prone areas: the Zonal 
Drought Resistance Paddy Research Station in Hathwara, 
Purulia; Krishi Vigyan Kendra in Jahajpur, Purulia; and the 
Amarkanan Rural Welfare Society in Bankura, West Bengal for 
their drought resistance.Among these, 7 germplasms are 
established varieties, while 22 are traditional landraces, 
cultivated primarily in the Red Lateritic Zone (Zone IV) of 
Purulia and Bankura district, located in the Chhotanagpur 
Plateau region. These landraces, adapted to the region's 
challenging environmental conditions, offer unique insights 
into natural drought resilience and could hold the key to future 
breeding programs aimed at improving drought tolerance in 
rice.
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Table	1:	List	of	germplasms

*DT:	Drought	Tolerant,	DS:	Drought	Susceptible,	HYV:	High	Yielding	Variety,	L:	Landrace

All 29 germplasms were subjected to varying levels of drought 
stress using polyethylene glycol (PEG) solutions, starting from 
0% PEG concentration (no stress/control) to 5%, 10%, and 20% 
PEG, representing mild, moderate, and severe drought 
conditions respectively. The osmotic potential of each treatment 
was calculated based on the Michel and Kaufmann (1973) 
equation (Table 2). The equation is mentioned below, where the 
osmotic potential is represented by ψ.
ψ= -(1.18 x 10-2) C - (1.18 x 10-4) C2 + (2.67 X 10-4) CT + (8.39 x 
10-7) C2T………Eq. (1)
Where C is the concentration of PEG 6000 in g/kg of H O So, for 2

5% PEG, C is 50; 10% PEG, C is 100; 20% PEG, C is 2000 and T= 
OTemperature i.e. 25 C

Each germplasm underwent treatment with all four PEG 
concentrations.

Table	2:	Osmotic	potential	of	different	PEG	solutions

To begin, seeds were surface sterilized and exposed to various 
levels of drought stress for 10 days in petri plates and test tubes, 
with �ive replications per treatment. Root length was measured 
daily: in petri plates using a ruler, and in test tubes using non-
contact image analysis via ImageJ software (Fig. 1). By the 10th 
day, total root lengths were recorded for each germplasm. 

Results	and	Discussion
The average root length (ARL) on the 10th day for each 
treatment was then plotted to reveal distinct root growth 
patterns. Interestingly, four unique growth patterns emerged 
across the different stress levels, offering valuable insights into 
how each germplasm responds to varying drought conditions.

[A]	

[B]	 [C]	 [D]	
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Fig 1: [A]- Treatment in Petri plates, [B]- Root growth under mild 
stress, [c]- Reduced root growth under severe stress, [D]- 
Measurement of root length in contact method using a scale, [E]- 
Treatment in test tubes, [F]- Original RGB image and [G]- its 8-
bit image in Image J software [non-contact method].
Pattern	1-	Thirteen germplasms, including all seven established 
varieties, exhibited their highest average root length (ARL) 
under control conditions. However, as drought stress 
intensi�ied, root growth declined signi�icantly, with the ARL 
reaching its lowest under severe stress conditions. Speci�ically, 
the ARL dropped by an average of 33.68% under mild stress, 
57.72% under moderate stress, and an alarming 97.79% under 
severe PEG stress.
Certain germplasms like Bhadoi, Kashiphool, and Swarna 
showed no measurable ARL under 10% and 20% PEG stress, 
while DRR42, and Bhuri had no root growth at severe stress 
conditions.  Table 3 presents the detai led ARL and 
corresponding percentage reductions across different stress 
levels. These �indings are in line with earlier studies [22, 23], 
which also demonstrated a sharp decrease in root length as 
drought stress increases. Similarly, Patmi and Pitoyo (2020) 
reported that drought not only reduces root length but also 
diminishes the area of root aerenchyma in rice.

[E]	 [F]	 [G]

Pattern	2-In this pattern, the highest ARL was observed under 
control conditions, followed by a sharp decline in mild stress. 
Interestingly, beyond this initial drop, the ARL remained 
relatively stable under both moderate and severe stress 
conditions. The reduction in ARL was consistent, with values of 
51.49%, 52.92%, and 52.70% for mild, moderate, and severe 
stress, respectively, indicating a steady 50% decrease in root 
growth across all stress levels.
Landraces such as Maniksal, Sonagori, Neta, Bhundi, and 
Vasamanik exhibited this distinct root elongation pattern, as 
detailed in Table 3. These results highlight a unique drought 
tolerance mechanism where root growth is sharply curtailed 
early on but then stabilizes under increasing drought intensity.

Pattern	 3-This category encompassed the largest number of 
landraces, where ten germplasms showed their highest ARL 
under control conditions, followed by a sharp decrease at mild 
stress. Interestingly, as the stress level intensi�ied, their ARL 
gradually increased, reversing the initial decline. The reduction 
in ARL was 55.18% under mild stress, 45.05% under moderate 
stress, and 32.40% under severe stress, indicating a notable 
recovery in root growth as drought conditions worsened.
The most pronounced increase in ARL under 20% PEG stress 
was observed in landraces such as Vutmuri, Kelesh, and Velchi-I. 
These �indings align with previous studies on rice [7, 25, 26], 
which reported enhanced root growth under stress during key 
stages—seedling, vegetative, and reproductive—likely as an 
adaptive response to maximize water and nutrient uptake 
under drought conditions.

Pattern	4-	Lastly, a unique root growth pattern was observed in 
the landrace Kalpana. Remarkably, its root length increased 
under mild stress, even surpassing the control condition by 
10%. However, as drought stress intensi�ied, root growth 
sharply declined, reaching zero under 20% PEG stress. This 
unusual growth response could be attributed to speci�ic genetic 
or physiological factors unique to Kalpana.
A study by De et al., 2024(b) further explored this distinctive 
pattern where a logistic equation was applied to simulate its 
root growth and predict drought resistance. This mathematical 
modeling offers valuable insights into how such a rare growth 
response might contribute to drought tolerance in extreme 
conditions.eversing the initial decline. The reduction in ARL was 
55.18% under mild stress, 45.05% under moderate stress, and 
32.40% under severe stress, indicating a notable recovery in 
root growth as drought conditions worsened.
The most pronounced increase in ARL under 20% PEG stress 
was observed in landraces such as Vutmuri, Kelesh, and Velchi-I. 
These �indings align with previous studies on rice [7, 25, 26], 
which reported enhanced root growth under stress during key 
stages—seedling, vegetative, and reproductive—likely as an 
adaptive response to maximize water and nutrient uptake 
under drought conditions.
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Conclusion
This study reveals distinct root growth patterns among 29 rice 
germplasms under varying levels of drought stress. The 
diversity in root responses, ranging from gradual reductions to 
increases in root length under stress, highlights the complex 
mechanisms of drought tolerance. Out of the twenty-two 
landraces, those following Pattern 2 (i.e. Maniksal, Vasamanik) 
and 3 (Vutmuri, Kelesh) where the root length either remained 
constant or increased under stress respectively, suggest 
potential genetic traits for enhancing resilience in extreme 
conditions of drought. Notably, the unique behavior of the 
landrace Kalpana leaves room for further studies regarding its 
genetic traits under stress. 

These �indings are of paramount importance offering valuable 
insights for future breeding programs aimed at improving 
drought tolerance in rice.
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Table	3:	Root	length	and	its	reduction	percentage	under	stress	for	29	germplasms

*Red.	at	5%	PEG,	Red.	at	5%	PEG,	and	Red.	at	5%	PEG	indicates	the	reduction	percentage	of	RL	under	5%,	10%,	and	20%	stress	from	control	condition	respectively.	Only	
Kalpana	had	a	negative	reduction	i.e.	an	increment	in	RL	at	5%	PEG	stress.
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